Oracle's Bitmap Index is an efficient indexing method, particularly useful for columns with low cardinality (few distinct values). While it can significantly enhance query performance in read-heavy environments,it presents unique challenges in systems with heavy DML operations,One of the most significant challenges is the risk of deadlocks due to the nature of how bitmap indexes work.
In this blog, we'll explore the mechanics of bitmap indexes, how they work in Oracle, and why they can cause deadlocks and locking issues when there's heavy DML activity.
What is a Bitmap Index?
In a bitmap index, data is organized as a series of bitmaps (binary representations of 0s and 1s) that represent the presence or absence of a particular value for rows in the indexed column. Each entry in the bitmap index corresponds to a unique value in the indexed column and contains information about which rows in the table have that value.
The structure of a bitmap index involves:
- Key Value: The actual value in the indexed column.
- Low-Rowid: The starting rowid in the range of rows that this bitmap entry applies to.
- High-Rowid: The ending rowid in the range of rows that this bitmap entry applies to.
- Bitmap: A string of 0s and 1s, where each bit corresponds to a row in the table (within the specified range). A '1' means the value is present in that row, and a '0' means the value is not.
Deadlocks Due to Bitmap Index Updates
Let’s consider a scenario where DML operations occur and multiple transactions interact with the same bitmap index, causing locking issues.
Scenario 1: Updating a Record in PRODUCT
Let’s assume you have the following data in your PRODUCT table and bitmap index
CREATE TABLE product (
product_id NUMBER,
product_name VARCHAR2(100),
category_id NUMBER
);
INSERT INTO product (product_id, product_name, category_id) VALUES (1001, 'Widget A', 5);
INSERT INTO product (product_id, product_name, category_id) VALUES (2002, 'Widget B', 8);
INSERT INTO product (product_id, product_name, category_id) VALUES (3003, 'Widget C', 5);
Your bitmap index might look like this:
CATEGORY_ID LOW-ROWID HIGH-ROWID BITMAP
5 aaadf1000 aaadf1050 01010101010101
5 aaadf1060 aaadf1100 11010101010101
8 aaadf1200 aaadf1250 10101010101010
In this case, each bitmap entry represents a category (e.g., CATEGORY_ID = 5 or CATEGORY_ID = 8). The LOW-ROWID and HIGH-ROWID represent the range of rows that the bitmap entry applies to. The bitmap string (e.g., 01010101010101) corresponds to the product rows in that range, indicating which rows belong to that category (where "1" means the product belongs to the category, and "0" means it does not).
Let’s now assume you execute the following update:
UPDATE product SET category_id = 8 WHERE product_id = 1001;
This update changes the category of Widget A (product ID 1001) from category 5 to category 8. The bitmap index needs to be updated:
The bitmap entry for CATEGORY_ID = 5 will remove the "1" at the position where Widget A (row 1001) was found.
The bitmap entry for CATEGORY_ID = 8 will add a "1" at the position where Widget A (row 1001) is now moved.
At this point, the bitmap index entries for both CATEGORY_ID = 5 and CATEGORY_ID = 8 are locked by your transaction, since both bitmap entries need to be updated.
Scenario 2: A Conflicting Update
Now, assume another transaction tries to execute the following update:
UPDATE product SET category_id = 5 WHERE product_id = 2002;
This transaction is attempting to change Widget B (product ID 2002) from category 8 to category 5. Since Widget B is currently in category 8, the bitmap entry for CATEGORY_ID = 8 needs to be updated to remove the "1" for Widget B (row 2002), and the bitmap entry for CATEGORY_ID = 5 needs to be updated to add a "1" for Widget B (row 2002).
At this point, a deadlock can occur. Here’s why:
The first transaction has already locked the bitmap entries for both CATEGORY_ID = 5 (to remove the "1" for Widget A) and CATEGORY_ID = 8 (to add the "1" for Widget A).
The second transaction is attempting to update the same bitmap entries: it wants to remove the "1" from CATEGORY_ID = 8 (for Widget B) and add a "1" to CATEGORY_ID = 5 (for Widget B).
Since both transactions are trying to update the same bitmap entries simultaneously (in this case, for both category 5 and category 8), they block each other, leading to a deadlock.
This occurs because both transactions are competing to modify the same bitmap index entries that represent overlapping rows in the PRODUCT table.
No comments:
Post a Comment